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An off-lattice pseudocontinuous model for semiflexible polymerlike micelles with excluded volume inter-
actions is presented. Expansion factors are determined for the radius of gyration squared and for three different
characteristic point-point distances squared. They are found to scale with an exponent in agreement with
renormalization-group results and with previous lattice simulations. A comparison with the Yamakawa-
Stockmayer-Shimada theory gives a reduced binary cluster integralB50.30 for the micelles which is similar
to the value for polystyrene~PS! in a good solvent. We present an approach for simultaneously analyzing the
point-point distance distribution functions and obtaining the characteristic parameters of these. Scattering
functions are determined and used for analyzing small-angle neutron scattering data from PS in a good solvent.
@S1063-651X~96!50812-3#

PACS number~s!: 61.25.Hq, 61.20.Ja

Giant wormlike micelles have been found to behave es-
sentially as semiflexible polymers in a good solvent@1–3#.
This is most clearly reflected in the results of small-angle
neutron ~SANS! and static light scattering~SLS! experi-
ments. The scattering functionS(q), whereq is the modulus
of the scattering vector, exhibits all the regions that are char-
acteristic of the various length scales and properties of such
polymers: overall size, flexibility, local stiffness, and finite
cross-section size.

The scattering data in the literature have generally only
been qualitatively analyzed using various asymptotic expres-
sions. The exception is a recent light scattering study@3# in
which the results were analyzed using the available theoreti-
cal expressions for semiflexible polymers in good solvents.
One of the results of the scattering experiments is the root-
mean-square radius of gyration,Rg . If Rg can be related to
the contour lengthL of the chain, one has direct access to
studying the growth law and the thermodynamics of the sys-
tems@3#. However, the dependence ofRg onL is not known,
since the expansion factors of the chains due to excluded
volume effects are not well known. Furthermore, the avail-
able semiempirical expansion factors of, e.g.,Rg , from per-
turbation calculations@4# cannot be used, since the value of
the binary cluster integral is not known for chains with the
particular cross-section size and flexibility of the micelles.
Moreover, there are currently no expressions available for
the scattering function of semiflexible chains with excluded
volume effects, which cover the entireq range and which
could be used for analyzing SLS and SANS data from poly-
merlike micelles.

In this paper, we present a Monte Carlo model for self-
avoiding semiflexible micelles based on the Kratky-Porod
@5# ~KP! model for semiflexible polymers. Polymerlike mi-
celles are typically composed of thousands of amphiphilic
molecules and are thus, for all practical considerations, con-
tinuous in nature. It can therefore be expected that the KP
model can provide a good description of the micelles. Here
we present a realization of the model with an approach for

including the excluded volume interactions in a pseudo-
continuous version of the model. An extremely efficient
simulation algorithm@6# is used and this allows for the first
time simulations to be performed on pseudocontinuous KP
chains with excluded volume effects over five decades of
contour lengthL/b, whereb is the statistical~Kuhn! length.
Determinations ofRg , the end-to-end distanceDee, the end-
to-middle distanceDem, and the distance between two inner
pointsDii , situated atL/4 and 3L/4 along the contour, as
well as the distribution functions of the three latter param-
eters, have been performed. We present an approach, based
on the empirical distribution functions suggested by Mazur
@7# and the relation given by Fisher@8# for analyzing simul-
taneously the distributions in the large-L limit. This gives
very accurate determinations of the characteristic parameters
of the distribution functions, which can be compared with
the predictions of renormalization-group calculations@9# and
the results of simulations on lattice@10–12# and flexible
polymer models@13–15#.

The Monte Carlo model is based on the discrete represen-
tation @16# of the continuous KP model. The discrete model
hasN points separated byl 0, equal valence angles, and free
rotation about the bonds. The contour length isL5Nl0 and
the Kuhn length,b, is related to the valence angle,u, by
b5 l 0(11cosu)/(12cosu). The two parameters that specify a
certain micelle or chain areL/b and the dimensionless cross-
section radiusR/b of the micelle or chain. Typical values of
b andR for micelles are 300 Å and 30 Å@2#, which gives
R/b50.1. This value was used throughout the present work.
In the model~and the simulations! the continuous limit is
approached lettingN→`, l 0→0, andu→0 in such a way
thatL/b is constant.

The excluded volume effects are taken into account by
placing hard spheres of radiusR at each point along the
chain. A hard-sphere potential has previously been found to
give a correct description of intermicellar interactions in
similar systems@17#. A test for volume overlap of a chain in
the simulation can, in principle, be performed by checking
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the overlap between the spheres on the chain. However, for a
large number of spheres per unit ofb, i.e., for a large ratio of
b/ l 0, one encounters the problem that several consecutive
spheres along the chain overlap irrespective of the chain con-
formation. Therefore, the search for overlap does not start in
the immediate neighborhood~e.g., at the third nearest neigh-
bor as in atomistic models@24#!, but further along the chain
depending onb/ l 0. On a straight section of the chain, spheres
separated by 2R along the contour do not overlap. However,
the chain should be allowed to make a 180° bend. The
spheres along the bend will have their centers on a semicircle
of radius R, which means that the spheres separated by
pR5pb/10'0.314b along the contour should not overlap.
Considering this, we have decided to look for overlap for
spheres separated by more thanb/3 along the contour~inde-
pendent of the values ofN, l 0, andL).

For fixed values ofL/b the influence of the finite number
of points on the chain,N, onRg, Dee, Dem, andDii , where
X̄ means ensemble root-mean-square value ofX, was inves-
tigated by making extrapolations versus 1/N. For the chains
without excluded volume effects, comparisons were in addi-
tion made with the analytical results forRg andDee @16,18#.
For N.1000 the error from finite-N effects was always
smaller than 0.3%. ForL/b,167,N51000 was used. With
this choice, the valence angleu depends onL/b. For longer
chains (L/b.167) the number of spheres per unitb was six,
which resulted in a sphere radius of 0.6l 0. This gives a rea-
sonable approximation to the local cylindrical structure for
the long chains. For these chainsu544.42°. For the longest
chains withL/b516384 the number of points on the chain is
98305.

In the simulations for the short chains withL/b,100, a
simple rejection algorithm was used: chains were grown
from scratch and those with overlap were simply discarded.
This gives completely independent samples but the method
is only efficient for short chains, since the number of rejec-
tions growths rapidly withL/b. For longer chains the pivot
algorithm of Stellman and Gans@6,19# was used together
with the ‘‘zippering method’’ for looking for overlap@20#.
We have performed simulations for lengths ranging from
L/b50.25 up to 16 384, both with and without excluded
volume effects. For chain lengthL/b,100, 1042105 inde-
pendent samples were generated by the rejection algorithm
for each value ofL/b. For L/b.100 the typical ensemble
size was 53105. The errors onRg , Dee, Dem, andDii were
calculated by standard methods for the rejection algorithm,
whereas a block analysis@22# was used for the pivot algo-
rithm @21#. Typical standard errors are smaller than 0.3% and
we note that the influence of finiteN, mentioned in the pre-
vious paragraph is similar to or smaller than the standard
errors. A comparison with methods involving more compli-
cated schemes for the moves was performed forL/b5128
@24#. The results agreed within the statistical errors.

The results forRg @Fig. 1~a!# with and without excluded
volume interactions start to differ aroundL/b51. The ex-
pansion factorsa of Rg , Dee, Dem, andDii due to excluded
volume effects have been calculated and are shown in Fig.
1~b!. The expansion factor of, e.g.,Rg is defined as
aRg

(L/b)5Rg/(Rg)0, where (Rg)0 is the value without ex-
cluded volume effects. The expansion factors exhibit a large

crossover region betweenL/b51 andL/b5200, and slowly
approach the asymptotic behavior forL/b.200. The expo-
nents and the corrections to scaling were determined using
@10,14#:

a~x!2'A1x
e@11A2 /x

D# ~1!

with different values ofA1 andA2 for the different param-
eters. A simultaneous least-squares fit forL/b.10 to the
expansion factors of the four parameters with the same value
of e gives e50.176060.0035 andD50.4660.08. The er-
rors were estimated as described in@25#. The value ofe is in
good agreement with the best renormalization-group calcula-
tion result of e50.176 @26#, as well as withe50.1754
60.0016 found for lattice simulations@10#.

In order to apply the simulation results in the analysis of
experimental data, an expression fora(x) in the full range of
the simulated data (0.3<L/b<16384) is required. The em-

pirical expressiona(x)25@11(x/n1)
21(x/n2)

3# ẽ /3 was
found to give good fits in the full range. A simultaneous fit
gave ẽ50.170 andn153.12, n258.67 for Rg , n152.42,
n256.90 for Dee, n153.56, n259.95 for Dem, and
n152.88,n256.76 forDii . ẽ deviates significantly from the
value ofe found using Eq.~1! due to the different way the
two expressions approach the asymptotic limit. The two ex-
pressions fora were found to have a root-mean-square de-

FIG. 1. ~a! The dependence ofRg on L/b with ~triangles! and
without ~circles! excluded volume interactions.~b! Expansion fac-
tors for Rg , Dee, Dem, andDii in a log-log representation. For
clarity, the upper curves have been displaced by 0.05, 0.1, and 0.15,
respectively. The curves are the fit obtained by the empirical expan-
sion factors and the results for chains without excluded volume
@18#.
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viation less than 0.3% for 10<L/b<16384, which is of the
same magnitude as the statistical errors on the simulation
results.

The distribution functions ofDee, Dem, and Dii have
been analyzed using the function suggested by Mazur@7#:
W(r )5Crsexp@2(r/s)t#, with C215(ss11/t)G@(s11)/t#
and s25Dxy

2G@(s11)/t#/G@(s13)/t#, whereDxy
2 is the

mean-square value of one of the distances andG(x) is the
gamma function. This function gives relatively good fits to
the distributions in the full range ofL/b both with and with-
out excluded volume interactions with almost perfect agree-
ment forL/b.10 ~see Fig. 2!. The parameterss and t for
Dee for excluded volume effects obtained from fits to the
individual distributions are displayed in Fig. 2. For
L/b→0, s and t→`, which reflects that the distribution
function approaches ad function atr5L/b due to the local
stiffness of the chain. ForL/b→`, t and s approach con-
stant values of about 2.43 and 2.22, respectively.

In order to get accurate estimates of the parameters in the
asymptotic limit L/b→`, the 42 distribution functions of
Dee, Dem, andDii were analyzed by an approach in which
all the distributions forL/b.200 were fitted simultaneously.
The expression~1! was used for the expansion factors with
e andD fixed at the values determined by fitting the expan-
sion factors. Usingt52/(12e) @8#, one has only nine fitting
parameters (A1, A2 , ands, for each of the parametersDee,
Dem, andDii , for fitting 42 distributions@23#. We obtained
an excellent fit to the distribution functions, which shows
that the distributions follow the suggested behavior within
the statistical errors. The values fors were 2.22460.006,
2.41260.006, and 2.71460.006 forDee, Dem, andDii , re-
spectively. These values are very close to those found by
renormalization-group calculations@9#: 2.27360.004,
2.45960.003, and 2.7160.05, respectively. Monte Carlo
simulations on relatively short flexible chains with
R/b50.28 @13# give 2.2760.01, 2.5560.06, and
2.6060.15, respectively, whereas lattice simulations give
2.26260.015 for Dee @11# and 2.41960.003 for Dem
@12,27#.

In the present work, the strength of the excluded volume
interactions is expressed through the parameterR/b. How-
ever, in most theoretical studies@28# it is more frequently
done by giving the value of the reduced binary cluster inte-
gral B. In order to get the value ofB corresponding to
R/b50.1 we have analyzed the results forRg andDeeby the
Yamakawa-Stockmayer-Shimada~YSS! theory@4#. A simul-
taneous fit to the simulation results forRg and Dee gives
B50.3060.01 forL/b,500. The fits to the simulation data
deviate significantly forL/b.1000 due to the assumed value
e50.200 in the YSS theory. The value forB is quite similar
to the value determined for polystyrene~PS! in benzene
(B50.23) @4,29# and PS in toluene@30# (B50.26), which
means that the simulation results should also be applicable to
PS in good solvents. This is further demonstrated in the fol-
lowing.

The scattering functionsS(q) have been determined for
L/b50.32640. Forqb.5, S(q) follows the 1/q behavior
of a straight cylinder and at lowerq it follows the expected
q22/(11e) behavior for chains with excluded volume interac-
tions. The scattering functions have been parameterized for
use in least-squares analysis of SLS and SANS data@31,32#
and in the following an application to the SANS data from
atactic PS in the good solvent carbon disulfide is described
@33#. Figure 3 shows the scattering data for PS with a mo-
lecular weight of about 1.63106 deuterated only at the back-
bone. With this labeling the chains are effectively infinitely
thin in the SANS experiment and the scattering function is
directly observed. The data show the expectedq22/(11e) and
q21 behavior; however, a crossover to a constant intensity is
not observed at lowq due to the largeRg of the chains. The
full curve in Fig. 3 is the parametrized scattering function
calculated forb525 Å and withL determined from the mo-
lecular weight. The agreement between the curve and the
data is excellent.

In this paper, we have presented a Monte Carlo model for
simulating single chain properties of polymerlike micelles

FIG. 2. Results fors and t in the Mazur function forDee for
chains with excluded volume interactions. Inset: fit to the distribu-
tion function forL/b52048.

FIG. 3. Scattering data for PS in carbon disulfide@33#. The
curve is a fit using the parametrized functions with excluded vol-
ume interactions.
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with excluded volume interactions. The study provides im-
portant understanding of the excluded volume effects in such
micelles. The results for, e.g., the expansion factors are es-
sential for the correct interpretation, in particular of scatter-
ing experiments. A simultaneous analysis of a large amount
of simulation results for different chain lengths has provided
accurate exponents in scaling laws and very accurate
parameters for the distribution functions, which have been
found to be in good agreement with the predictions of
renormalization-group calculations. We have, in addition,
made connections to the standard models and theories for

polymers and demonstrated that the results are applicable to
polymers in a good solvent. Finally, we have obtained pa-
rametrized scattering functions, which we have successfully
applied to PS in a good solvent and which we can use for
analyzing scattering data from polymerlike micelles in the
future.
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